[This question paper contains 4 printed pages.]

	(14)	Your Roll No. 2023
Sr. No. of Question Paper	:	4960	E
Unique Paper Code	:	62357604	THE KIN COLLER
Name of the Paper	:	Differential Equations	(BRARY)
Name of the Course	:	B.A. (Prog.)	The state
Semester	:	VI	CALL, X. C
Duration : 3 Hours			Maximum Marks : 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt any two parts from each question.
- 3. All questions are compulsory.

Q.1

(i) Solve the differential equation

$$(x^2 - 3y^2) \, dx + 2xy \, dy = 0$$

6

(ii) Solve the differential equation

$$\frac{dy}{dx} + y = x y^3$$

6

(iii) Solve the following differential equation

$$e^{4x} (p-1) + e^{2y} p^2 = 0$$

by reducing it to Clairaut form using the transformation

$$e^{2x} = u$$
 and $e^{2y} = v$.

6

Q. 2

(i) Find the general solution of

$$y''' - 5y'' + 7y' - 3y = 0$$

2

(ii) Given that
$$e^{-x}$$
, e^{3x} and e^{4x} are all solution of

$$y''' - 6y'' + 5y' + 12y = 0$$

....

Show that they are linearly independent on the interval $-\infty < x < \infty$ and write the general

(iii) Solve the equation

÷.

$$x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + 2y = 0$$

(i)

Find the general solution of the given differential equation using variation of parameter

$$y^{\mu} + y = \tan x$$

(ii) Solve

$$\frac{dx}{dt} + 7x + y = 0$$
$$\frac{dy}{dt} + 2x + 5y = 0$$

6.5

6

6

۰.

(iii) Solve

$$\frac{dx}{y^3 x - 2x^4} = \frac{dy}{2y^4 - x^3 y} = \frac{dz}{9z(x^3 - y^3)}$$

3

•

Q.4

(i) Form the partial differential equation of the equation \neq

•

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

(ii) Find the general solution of the equation

$$2(xp - yq) = y^2 - x^2$$

(iii) Find the complete integral of
$$z = pq$$

Q.5

(i) Find the partial differential equation of all spheres having their centers in the xy-plane.

(ii) Find the general solution of the equation

$$x^2p + y^2q = (x+y)z$$

6.5

6.5

6.5

6

6

6

6.5

..

(iii) Find the complete integral of px + qy = pq

Q.6

. . .

(i) Find the general solution of the equation

$$y^2p - xyq = x(z - 2y)$$

•

(ii) Find a complete integral of $p = (z + qy)^2$

.

(iii) Reduce the equation $r - x^2 t = 0$ to the canonical form.

• :

6.5

....

[This question paper contains	s 4 printed p	pages.]	2 - 2 3
		(15)	Your Roll No 200
Sr. No. of Question Paper	:	4986	E
Unique Paper Code	:	62357604	SAS COLLES
Name of the Paper	•	Differential Equat	ions
Name of the Course	•	B.A. (Prog.)	The state
Semester	:	VI	And Here De
Duration : 3 Hours			Maximum Marks : 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt any two parts from each question.
- 3. All questions are compulsory.

Q. 1

(i) Solve the initial value problem that consists of the differential equation

$$x\sin y\,dx + (x^2 + 1)\cos y\,dy = 0$$

and the initial condition $y(1) = \frac{\pi}{2}$.

(ii) Solve the differential equation

$$y^2 dx + (3xy - 1)dy = 0$$

(iii) Solve the differential equation

$$p^2 (x^2 - a^2) - 2pxy + y^2 - b^2 = 0$$

6

6

6

Q. 2

(i) Find the general solution of

$$y'' - 6y' + 25y = 0$$

(ii) Given that x, x^2 and x^4 are all solution of

$$x^3y^{**} - 4x^2y^{*} + 8xy^{*} - 8y = 0$$

Show that they are linearly independent on the interval $0 < x < \infty$ and write the general solution.

(iii) Solve the differential equation using variation of parameter method

$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - y = x^2 e^x$$

Q.3

(i) Solve the differential equation

$$x^{3}\frac{d^{3}y}{dx^{3}} - 4x^{2}\frac{d^{2}y}{dx^{2}} + 8x\frac{dy}{dx} - 8y = 0$$

(ii) Solve

$$\frac{d^2x}{dt^2} - 3x - 4y = 0$$
$$\frac{d^2y}{dt^2} + x + y = 0$$

6.5

(iii) Solve

$$\frac{dx}{mz - ny} = \frac{dy}{nx - lz} = \frac{dz}{ly - mx}$$

6.5

6

6

6.5

6

x

Q.4

(i) Find the partial differential equation by eliminating the arbitrary function f from the equation

3

$$f(x^2 + y^2 + z^2, z^2 - 2xy) = 0$$

(ii) Find the general solution of the equation

$$(x - y)y^{2}p + (y - x)x^{2}q - (x^{2} + y^{2})z = 0$$

(iii) Find a complete integral of

$$(p+q)(px+qy) = 1$$

Q.5

(i) Form partial differential equation from the equation

 $2z = (ax + y)^2 + b$; a, b are arbitrary constant.

(ii) Find the general solution of the equation

$$px(z-2y^2) = (z-qy)(z-y^2-2x^3)$$

6.5

6.5

6

6

(iii) Find the complete integral of the equation

 $2xz - px^2 - 2qxy + pq = 0$

Q.6

۰.

(i) Form partial differential equation from the equation

$$ax^2 + by^2 + z^2 = 1$$

6.5

(ii) Find the general solution of the equation

$$(y+zx)p-(x+yz)q=x^2-y^2$$

(iii) Reduce the equation r - t = 0 to the canonical form

6.5