[This question paper contains 4 printed pages.]

Sr. No. of Question Paper
Unique Paper Code
Name of the Paper
Name of the Course
Semester
\because
Duration : 3 Hours

4960

62357604
Differential Equations
B.A. (Prog.)

VI

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.
2. Attempt any two parts from each question.
3. All questions are compulsory.
Q. 1
(i) Solve the differential equation

$$
\left(x^{2}-3 y^{2}\right) d x+2 x y d y=0
$$

(ii) Solve the differential equation

$$
\frac{d y}{d x}+y=x y^{3}
$$

(iii) Solve the following differential equation

$$
e^{4 x}(p-1)+e^{2 y} p^{2}=0
$$

by reducing it to Clairaut form using the transformation

$$
e^{2 x}=u \text { and } e^{2 y}=v
$$

Q. 2
(i) Find the gencral solution of

$$
y^{\prime \prime \prime}-5 y^{\prime \prime}+7 y^{\prime}-3 y=0
$$

(ii) Given that $e^{-x}, e^{3 x}$ and $e^{4 x}$ are all solution of

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+5 y^{\prime}+12 y=0
$$

Show that they are linearly independent on the interval $-\infty<x<\infty$ and write the general solution.
(iii) Solve the equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0
$$

Q. 3
(i)

Find the general solution of the given differential equation using variation of parameter
method.

$$
y^{\prime \prime}+y=\tan x
$$

(ii) Solve

$$
\begin{aligned}
& \frac{d x}{d t}+7 x+y=0 \\
& \frac{d y}{d t}+2 x+5 y=0
\end{aligned}
$$

(iii) Solve

$$
\frac{d x}{y^{3} x-2 x^{4}}=\frac{d y}{2 y^{4}-x^{3} y}=\frac{d z}{9 z\left(x^{3}-y^{3}\right)}
$$

Q. 4
(i) Form the partial differential equation of the equation :

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

(ii) Find the general solution of the equation

$$
2(x p-y q)=y^{2}-x^{2}
$$

(iii) Find the complete integral of $z=p q$
Q. 5
(i) Find the partial differential equation of all spheres having their centers in the $x y$-plane.
(ii) Find the general solution of the equation

$$
x^{2} p+y^{2} q=(x+y) z
$$

(iii) Find the complete integral of $p x+q y=p q$
Q. 6
(i) Find the general solution of the equation

$$
y^{2} p-x y q=x(z-2 y)
$$

(ii) Find a complete integral of $p=(z+q y)^{2}$
(iii) Reduce the equation $r-x^{2} t=0$ to the canonical form.
[This question paper contains 4 printed pages.]
Sr. No. of Question Paper
Unique Paper Code
62357604
Name of the Paper : Differential EquationsName of the CourseB.A. (Prog.)SemesterVI
Duration: 3 Hours

: 4986

E

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.
2. Attempt any two parts from each question.
3. All questions are compulsory.
Q. 1
(i) Solve the initial value problem that consists of the differential equation

$$
x \sin y d x+\left(x^{2}+1\right) \cos y d y=0
$$

and the initial condition $y(1)=\frac{\pi}{2}$.
(ii) Solve the differential equation

$$
y^{2} d x+(3 x y-1) d y=0
$$

(iii) Solve the differential equation

$$
p^{2}\left(x^{2}-a^{2}\right)-2 p x y+y^{2}-b^{2}=0
$$

Q. 2
(i) Find the general solution of

$$
y^{\prime \prime}-6 y^{\prime}+25 y=0
$$

(ii) Given that x, x^{2} and x^{4} are all solution of

$$
x^{3} y^{\prime \prime \prime}-4 x^{2} y^{\prime \prime}+8 x y^{\prime}-8 y=0
$$

Show that they are linearly independent on the interval $0<x<\infty$ and write the general solution.
(iii) Solve the differential equation using variation of parameter method

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=x^{2} e^{x}
$$

Q. 3
(i) Solve the differential equation

$$
x^{3} \frac{d^{3} y}{d x^{3}}-4 x^{2} \frac{d^{2} y}{d x^{2}}+8 x \frac{d y}{d x}-8 y=0
$$

(ii) Solve

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}}-3 x-4 y=0 \\
& \frac{d^{2} y}{d t^{2}}+x+y=0
\end{aligned}
$$

(iii) Solve

$$
\frac{d x}{m z-n y}=\frac{d y}{n x-l z}=\frac{d z}{l y-m x}
$$

Q. 4
(i) Find the partial differential equation by eliminating the arbitrary function f from the equation

$$
f\left(x^{2}+y^{2}+z^{2}, z^{2}-2 x y\right)=0
$$

(ii) Find the general solution of the equation

$$
(x-y) y^{2} p+(y-x) x^{2} q-\left(x^{2}+y^{2}\right) z=0
$$

(iii) Find a complete integral of

$$
(p+q)(p x+q y)=1
$$

Q. 5
(i) Form partial differential equation from the equation

$$
2 z=(a x+y)^{2}+b ; a, b \text { are arbitrary constant. }
$$

(ii) Find the general solution of the equation

$$
p x\left(z-2 y^{2}\right)=(z-q y)\left(z-y^{2}-2 x^{3}\right)
$$

(iii) Find the complete integral of the equation

$$
2 x z-p x^{2}-2 q x y+p q=0
$$

Q. 6
(i) Form partial differential equation from the equation

$$
a x^{2}+b y^{2}+z^{2}=1
$$

(ii) Find the general solution of the equation

$$
(y+z x) p-(x+y z) q=x^{2}-y^{2}
$$

(iii) Reduce the èquation $r-t=0$ to the canonical form

